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The effect of double-diffusive natural convection of water in a partially heated enclosure with Soret and
Dufour coefficients around the density maximum is studied numerically. The right vertical wall has con-
stant temperature hc, while left vertical wall is partially heated hh, with hh > hc. The concentration in right
wall is maintained higher than left wall (Cc < Ch) for case I, and concentration is lower in right wall than
left wall (Ch > Cc) for case II. The remaining left vertical wall and the two horizontal walls are considered
adiabatic. Water is considered as the working fluid. The governing equations are solved by control vol-
ume method using SIMPLE algorithm with QUICK scheme. The effect of the various parameters (thermal
Rayleigh number, center of the heating location, density inversion parameter, Buoyancy ratio number,
Schmidt number, and Soret and Dufour coefficients) on the flow pattern and heat and mass transfer
has been depicted. Comprehensive Nusselt and Sherwood numbers data are presented as functions of
the governing parameters mentioned above.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The natural convection in enclosures continues to be a very ac-
tive area of research during the past few decades. While a good
number of works have made significant contributions for the
development of the theory, an equally good number of works have
been devoted to many engineering applications that include elec-
tronic or computer equipment, thermal energy storage systems
and etc. For a detailed survey of literature on the natural convec-
tion heat transfer may look at Davis (1983) and Ostrach (1988).
However, we shall refer to a few important works that may serve
as background for the present work.

In most of the analysis pertaining to the convection of water in
enclosures, a linear temperature density relationship was taken.
But in practice this will never happen as the density of water varies
with temperature in a nonlinear fashion, attaining its maximum
density around 4 �C. Nansteel et al. (1987) numerically studied
the convection of cold water in the density maximum in a rectan-
gular enclosure. Coupling of natural convection flow across a verti-
cal density inversion is studied by Tong and Koster (1993). The
numerical results reveal that the dominant convection is deter-
mined by the horizontal location of the maximum density plane.
The penetration is highest at small Rayleigh numbers. Transient
flow field and heat transfer behavior of cold water in an enclosure
is numerically investigated by Chang and Yang (1995). Ho and Tu
ll rights reserved.
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(2001) also studied transient flow of water. Osorio et al. (2004)
studied experimentally and numerically the natural convection of
water near its density inversion in a square enclosure.

Double diffusive convection of water has been studied by Sezai
and Mohamad (2000) and Sivasankaran and Kandaswamy (2006,
2007). Yet, most work done considers flow inside closed enclo-
sures, the applications included, such as pollution dispersion in
lakes, chemical deposition, and melting and solidification process.
In most of the problems, Soret and Dufour effects are assumed to
be negligible. But the present work investigates both effects. Diffu-
sion of matter caused by temperature gradients (Soret effect) and
diffusion of heat caused by concentration gradients (Dufour effect)
become very significant when the temperature and concentration
gradients are very large. Generally these effects are considered as
second order phenomenon. In the effects may become important
in some applications such as the solidification of binary alloys,
groundwater pollutant migration, chemical reactors, and geosci-
ences. The importance of these effects has also seen in Joly et al.
(2000), Bahloul et al. (2003), Mansour et al. (2006), Patha et al.
(2006) and Platten (2006).

Joly et al. (2000) made the Soret effect on natural convection in
a vertical enclosure. They analyzed the particular situation where
the buoyancy forces induced by the thermal and solutal effects
are opposing each other and of equal intensity. Double diffusive
and Soret induced convection in a shallow horizontal enclosure
is analytically and numerically studied by Bahloul et al. (2003)
and also studied numerically by Mansour et al. (2006). They found
that the Nusselt number has decreases in general with the Soret
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Nomenclature

Alphabetics
C dimensional concentration (kg m�3)
cp specific heat at constant pressure (J kg�1 K�1)
cs concentration susceptibility
D solutal diffusivity (m2 s�1)
Df Dufour parameter
Dm constant molecular diffusivity(m2 s�1)
G acceleration due to gravity (ms�2)
kT thermal diffusion ratio
L length of the cavity (m)
Nu local Nusselt number
Nu average Nusselt number
P pressure (kg m�1 s�2)
Pr Prandtl number
R dimensionless density inversion parameter
RaC solutal Rayleigh number
RaT thermal Rayleigh number
Sc Schmidt number
Sh local Sherwood number
Sh average Sherwood number
Sr Soret parameter
t dimensional time (s)
T dimensionless temperature

u,v velocity components (m s�1)
U,V dimensionless velocity components
x,y dimensional coordinates (m)
X,Y dimensionless coordinates
W center of the heating location (m)

Greek symbols
a thermal diffusivity (m2 s�1)
bT coefficient of thermal expansion (K�2)
bC coefficient of solutal expansion (m3 kg�1)
l dynamic viscosity (kg m�1 s�1)
m kinematic viscosity (m2 s�1)
h temperature (K)
hI temperature at maximum density (K)
hm mean fluid temperature (K)
q density (kg m�3)
s dimensionless time

Subscripts
c cold wall
h hot wall
o reference state
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parameter while the Sherwood number increases or decreases
with this parameter depending on the temperature gradient in-
duced by each solution.

In the above studies convection heat transfer is due to the im-
posed temperature gradient between the opposing walls of the
enclosure taking the entire vertical wall to be thermally active.
But in many naturally occurring situations and engineering appli-
cations it is only a part of the wall which is thermally active. For
example in solar energy collectors due to shading, it is only the un-
shaded part of the wall that is thermally active. In order to have the
results to possess applications, it is essential to study heat transfer
in an enclosure with partially heated active walls. Only a few stud-
ies are reported in the literature concerning heat transfer in enclo-
sures with partially heated side walls, by Valencia and Frederick
(1989), Yucel and Turkoglu (1994), Frederick and Quiroz (2001),
Erbay et al. (2004) and Oztop (2007).

Natural convection in an enclosure with partially active walls is
studied by Nithyadevi et al. (2006, 2007) and Kandaswamy et al.
(2007) without Soret and Dufour effects. Present study deals with
the natural convection in a square enclosure filled with water and
partially heated vertical walls for three different combinations of
heating location in the presence of solute concentration with Soret
and Dufour effects. The hot region is located at the top, middle and
bottom of the left vertical wall of the enclosure.
Fig. 1. Physical configuration.
2. Mathematical formulation

The unsteady two-dimensional natural convection flow in a
square enclosure of length L filled with water is considered as
shown in Fig. 1. The partially heated active vertical left side wall
(h = L/2) and fully heated active vertical right side wall of the
enclosure are maintained at two different but uniform tempera-
tures and concentrations, namely, hh and hc, cc and ch (case I) or
ch and cc (case II), with hh > hc and ch > cc, respectively. The remain-
ing boundaries of the enclosure are thermally insulated. The heat
and mass transfer characteristics are investigated for three differ-
ent combinations of the heated active wall (viz.), the hot location
moving from top to bottom of the left wall. The gravity acts normal
to the x-axis. The velocity components u and v are taken in the x
and y directions, respectively. Under the above assumptions, the
conservation equations of mass, momentum, energy and concen-
tration with the Soret and Dufour effects in a two-dimensional
Cartesian co-ordinate system are

@u
@x
þ @v
@y
¼ 0; ð1Þ

@u
@t
þ u

@u
@x
þ v @u

@y
¼ � 1

q0

@p
@x
þ mr2u ð2Þ

@v
@t
þ u

@v
@x
þ v @v

@y
¼ � 1

q0

@p
@y
þ mr2v � q

q0
g ð3Þ

@h
@t
þ u

@h
@x
þ v @h

@y
¼ ar2hþ DkT

cscp
r2c ð4Þ

@c
@t
þ u

@c
@x
þ v @c

@y
¼ Dr2c þ DkT

hm
r2h ð5Þ

The following assumptions are considered. The density of the
cold water is assumed to vary with temperature according to the
following parabolic relationship as Tong and Koster (1993):
q = qo[1 � bT(h � hI)2], where qo is the maximum density at the
temperature hI = 3.98 �C. This variation, due to both temperature
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and concentration gradients, can be described by the following
equation q = qo[1 � bT(h� hI)2 + bC(c� co)], (bT = 8.0� 10�6(�C) K�2,
bC = 3.0 � 10�3 m3 kg�1) where bT and bC are the coefficients for
thermal and concentration expansions.

The appropriate initial and boundary conditions are:

t ¼ 0 : u ¼ v ¼ 0; h ¼ hc; c ¼ cc; 0 6 x 6 L; 0 6 y 6 L;

t > 0 : u ¼ v ¼ 0;
@h
@y
¼ @c
@y
¼ 0; 0 6 x 6 L; y ¼ 0 & L;

h ¼ hh; c ¼ cc or ch; x ¼ 0; w� h
2
6 y 6 wþ h

2
; h ¼ hc;

c ¼ ch or cc; x ¼ L; 0 6 y 6 L;
@h
@x
¼ @c
@x
¼ 0; x ¼ 0;

0 6 y 6 w� h
2
; wþ h

2
6 y 6 L:

Introducing the following non-dimensional variables

s ¼ t

L2=m
; ðX;YÞ ¼ ðx; yÞ

L
; ðU;VÞ ¼ ðu; vÞ

m=L
; P ¼ pL2

q0m2 ;

W ¼ w
L
; T ¼ h� hc

hh � hc
; C ¼ c � cc

ch � cc
; with hh > hc; ch > cc:

The non-dimensional form of the Eqs. (1)–(5) are obtained as,
@U
@X
þ @V
@Y
¼ 0; ð6Þ

@U
@s
þ U

@U
@X
þ V

@U
@Y
¼ � @P

@X
þr2U ð7Þ

@V
@s þ U

@V
@X
þ V

@V
@Y
¼ � @P

@Y
þr2V þ RaT

Pr
½ðT � RÞ2 � NC� ð8Þ

@T
@s
þ U

@T
@X
þ V

@T
@Y
¼ 1

Pr
r2T þ Dfr2C ð9Þ

@C
@s
þ U

@C
@X
þ V

@C
@Y
¼ 1

Sc
r2C þ Srr2T ð10Þ

The initial and boundary conditions in the dimensionless form
are:

s ¼ 0 : U ¼ V ¼ 0; T ¼ C ¼ 0; 0 6 X 6 1; 0 6 Y 6 1;

s > 0 : U ¼ V ¼ 0;
@T
@Y
¼ @C
@Y
¼ 0; 0 6 X 6 1; Y ¼ 0 & 1;

T ¼ 1; C ¼ 0 or 1; X ¼ 0; W � 1
4
6 Y 6W þ 1

4
; T ¼ 0;

C ¼ 1 or 0; X ¼ 1; 0 6 Y 6 1;
@T
@X
¼ @C
@X
¼ 0; X ¼ 0;

0 6 Y 6W � 1
4
; W þ 1

4
6 Y 6 1:

The nondimensional parameters that appear in the equations are,

RaT ¼ gbT ðhh�hcÞ2L3

m2 thermal Rayleigh number, Rac ¼ gbcðch�ccÞL3

m2 solutal

Rayleigh number, Pr ¼ m
a = 11.573 Prandtl number, Df ¼ DkT ðch�ccÞ

cscpmðhh�hcÞ

Dufour parameter, Sr ¼ DkT ðhh�hcÞ
hmmðch�ccÞ Soret parameter, Sc ¼ m

D Schmidt

number, R ¼ hI�hc
hh�hc

density inversion parameter, and N ¼ RaC
RaT

Buoy-

ancy ratio number.
The local Nusselt number and Sherwood number is defined by

Nu ¼ �@T
@X

�
�

X¼0, Sh ¼ �@C
@X

�
�
X¼1, or �@C

@X

�
�

X¼0, resulting in the average Nus-

selt number and Sherwood number as Nu ¼ 1
h

R
h NudY , Sh ¼R 1

0 ShdY or 1
h

R
h ShdY , where h ¼ L

2 is height of heating location.
3. Method of solution

The governing equations reported in the previous section are
solved numerically using SIMPLE algorithm of Patankar (1980).
The discretizations followed the QUICK scheme. This method,
based on the control volume formulation, is appropriate for work-
ing with mixed boundary conditions and for the treatment of the
pressure-velocity coupling. The resulting set of discretized equa-
tions for each variable is solved by a line-by-line procedure, com-
bining the tri-diagonal matrix algorithm (TDMA). Under relaxation
technique is employed for the pressure correction. The mass bal-
ance for global convergence is taken as 10�7. Uniform staggered
grid system is employed in the present study. The average Nusselt
numbers for various grid sizes (21 � 21 to 91 � 91) are presented
to develop an understanding of the grid fineness that is necessary
for accurate numerical simulation as seen in Fig. 2. There is consid-
erable change in the average Nusselt number from 21 � 21 to
51 � 51 and no noticeable change is observed from 51 � 51 to
91 � 91. Hence considering the accuracy of the results required
and computational time involved a 51 � 51 grid size is chosen
for all computational. The comparison of the calculated average
Nusselt number using the present numerical method for different
Rayleigh numbers with literature is presented by Nithyadevi and
Yang (2009). Relatively good agreement is obtained. We are, there-
fore, confident that the results reported in our paper are accurate.
4. Results and discussion

In the studied configuration, double diffusive natural convec-
tion of water in a two-dimensional partially heated enclosure in
the presence of Soret and Dufour effects around the region of its
density maximum. The computations are carried out for different
values of thermal Rayleigh number, Buoyancy ratio number, Den-
sity inversion parameter, Schmidt number, Soret parameter and
Dufour parameter with different heating locations. The parameters
considered are in the range 103

6 RaT 6 106 (thermal Rayleigh
number), 0.8 6 N 6 1.2 (Buoyancy ratio number), 0 6 R 6 2 (Den-
sity inversion parameter), 1 6 Sc 6 5 (Schmidt number), 0 6 Sr 6 1
(Soret parameter), 0 6 Df 6 1 (Dufour parameter). The results are
presented in the form of streamlines, isotherms, isoconcentration
and mid-height velocity profiles to show the fluid flow, heat and
mass transfer phenomena in transient and steady states. The rate
of heat and mass transfer in the enclosure is measured in terms
of the average Nusselt number and average Sherwood number.

At time s = 0, the fluid contained in the entire enclosure is
homogeneous and at 0 �C and does not generate heat internally.
For s > 0, the left heated active wall temperature is changed to hh

and that of right wall is maintained at hc = 0 �C = 273 K while in
the left active concentration wall Cc and right wall Ch (case I) or left
wall Ch and the right one Cc (case II) with Soret parameter Sr = 1.
Since the temperature of the left wall is higher than that of the
fluid inside the cavity, the wall transmits heat to the fluid by con-
duction and raises the temperature of fluid particles adjoining the
left wall.

Fig. 3a–h shows the evolution of fluid motion and subsequent
distribution of heat and mass across the enclosure as time evolves.
The results for transient state regime in case I are presented for
thermal Rayleigh number RaT = 105 with N = 1, R = 0.5, Sc = 5,
Sr = 1.0 and Df = 0.0 as a representative case. A weak convective
counter rotating cells appeared along the isothermal walls, when
s = 0.001. Increasing time steps strength of the cell increases and
left hot cell shrinks in its size towards the hot thermally active
location. Further increasing time, cold cell occupies the majority
of the enclosure while hot cell shrinks. When s = 0.05, the cold
and hot cells merging as a single cell with two secondary inner
cells. When increasing time a single cell splitted into two cells in
top and bottom of the enclosure, that is, one above another. Finally
in the steady state top cell strengthen and grows in its size. The cell
below of the enclosure is weakened and shrinks in its size. The iso-
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Fig. 2. (a–b) Average Nusselt number and velocity profile for different grid sizes, top heating active wall, Pr = 11.573, Sc = 5, N = 1, R = Df = Sr = 0 and RaT = 105.

Fig. 3. (a–h) Transient state of streamlines, isotherms and iso-concentration for top heating active wall, case I, R = 0.5, N = 1, Sc = 5, Df = 0.0, Sr = 1.0 and RaT = 105.
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therms and iso-concentrations are almost parallel to the active
parts indicating that only conduction mode of heat transfer is done
for initial time steps. Increasing time, the temperature and concen-
tration lines are spread out the whole enclosure and the convection
is initiated. Further increasing time convection is dominated across
the enclosure.

Fig. 4a–h illustrates the transient results of streamlines, iso-
therms and iso-concentrations for RaT = 105, R = 0.5, N = 1, Sc = 5,
Sr = 1.0, Df = 0.0 and for top heating active wall in case II. In the ini-
tial stage a small amount of fluid near the hot region is activated.
For s = 0.001 a small counter clockwise rotating hot cell appears
near the top heating location and the isotherms and iso-concentra-
tions are almost parallel lines. They indicate conduction mode of
heat transfer. At times s = 0.0025 and 0.005 the anti-clockwise
rotating cell (developed from the cold wall as inversional convec-
tion) grows in size, moves slightly away from the boundary and ex-
pands, while the isotherms and iso-concentrations become
parabolic and spreads to more than half of the enclosure. When
s = 0.0075–0.05 the convective cell has moved to the center, elon-
gated to elliptic shape and occupies the entire enclosure. The cor-
responding isotherms and iso-concentrations have reached the
right side of the enclosure. As s increases, the inner cell splits into
two, the thermal boundary layer is well established showing the
development of the convective mode of heat transfer.

The results are presented in terms of fluid flow, heat and mass
transfer for different heating active walls (at top, middle and bot-
tom left wall respectively), R = 0.5, N = 1, Sc = 5, Sr = Df = 0.5 and
RaT = 105 as seen in Fig. 5a–c (case I) and Fig. 6a–c (case II). In
Fig. 5, the hot active region is along half portion of the left vertical
wall at different location. In this figure we observe that the fluid
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Fig. 4. (a–h) Transient state of streamlines, isotherms and iso-concentration for top heating active wall, case II, R = 0.5, N = 1, Sc = 5, Df = 0.0, Sr = 1.0 and RaT = 105.

Fig. 5. (a–c) Steady state of streamlines, isotherms and iso-concentration for different heating active walls, case I, R = 0.5, N = 1, Sc = 5, Df = Sr = 0.5 and RaT = 105.
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flow covers the entire cavity. The fluid rises along the hot wall and
falls along the right cold wall; this leads to formation of the ther-
mal boundary layer at the upper part of the cold wall, the opposite
reaction its hold as seen in Fig. 6. The isotherms and iso-concentra-
tions are crowded around the active location on the left side of the
enclosure. The core region of the convective cell is near the cold
wall for top heating location and it moves to middle of the cell
for middle heating location, then it comes to hot wall side for bot-
tom heating location for case I in Fig. 5. The opposite behavior is
observed for case II in Fig. 6.



Fig. 6. (a–c) Steady state of streamlines, isotherms and iso-concentration for different heating active walls, case II, R = 0.5, N = 1, Sc = 5, Df = Sr = 0.5 and RaT = 105.

Fig. 7. (a–c) Steady state of streamlines, isotherms and iso-concentration for top heating active wall, case I, R = 0.5, N = 1, Sc = 5, and RaT = 105. (a) Df = 0.0, Sr = 0.0, (b) Df = 0.0,
Sr = 1.0, (c) Df = 1.0, Sr = 0.0.
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Fig. 8. (a–c) Steady state of streamlines, isotherms and iso-concentration for top heating active wall, case II, R = 0.5, N = 1, Sc = 5, and RaT = 105. (a) Df = 0.0, Sr = 0.0, (b) Df = 0.0,
Sr = 1.0, (c) Df = 1.0, Sr = 0.0.
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Fig. 9. (a–b) Average Nusselt number and Sherwood number vs thermal Rayleigh number for different heating active walls, Sc = 5, N = 1, R = 0.5, Df = Sr = 0.5.
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Figs. 7 and 8 show the effect of Soret and Dufour parameters on
fluid flow, heat and mass transfer rates with top heating active
location. In Fig. 7b, It is observed that the primary cell is pushed
to the top of the enclosure and a weak cell rotating in anticlockwise
direction is formed lower the primary cell at the bottom of the
enclosure. The formation of the bi-cellular flow pattern reduces
the heat transfer rate and increases the mass transfer. In the
remaining cases unicellular flow is appeared for Fig. 7a and c. A
single cell rotating in anti-clockwise direction appears inside the
enclosure for case II in Fig. 8.



-4 -3 -2 -1 -0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 Top heating active wall

Y

1 - 4

1 -- Df = 1, Sr = 0
2 -- Df = 0, Sr= 0
3 -- Df = 0.5, Sr = 0.5
4 -- Df = 0, Sr = 1

Sc =5
N =1
R =0.5
Ra =105

U
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-6

-4

-2

0

2

4

6

Sc =5
N =1
R =0.5
Ra =105

Top heating active wall

V

1 - 4

1 -- Df = 0, Sr =1
2 -- Df = 0.5, Sr= 0.5
3 -- Df = 0, Sr = 0
4 -- Df = 1, Sr =0

X

(a) (b)

Fig. 10. (a–b) Mid-height horizontal and vertical velocities at the middle of the cavity for different Soret and Dufour numbers and case I.

103 104 105 1060

2

4

6

8

10

12

14

16

18

Sc =5
N =1
R =0.5

1 -- Df = 0, Sr = 0
2 -- Df = 0.5, Sr= 0.5
3 -- Df = 0, Sr = 1
4 -- Df = 1, Sr = 0

1, 2 & 4

Top heating active wall

RaT

__
Sh

__
Nu

__
NU
__
Sh

1, 4

2, 3

3

103 104 105 1060

2

4

6

8

10

12

14

16

18

20

Sc =5
N =1
R =0.5

1 -- Df = 0, Sr = 0
2 -- Df = 0.5, Sr= 0.5
3 -- Df = 0, Sr = 1
4 -- Df = 1, Sr = 0

1, 2 & 3
Top heating active wall

RaT

__
Sh

__
Nu

__
NU
__
Sh

1, 4

3

4

2

 (a) Case I (b) Case II 

Fig. 11. (a–b) Average Nusselt number and Sherwood number vs thermal Rayleigh number for different Df and Sr, Sc = 5, N = 1, R = 0.5.
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The average Nusselt and Sherwood numbers are plotted as a
function of thermal Rayleigh number for different thermally active
walls in Fig. 9a and b. It is clear that, the heat and mass transfer
rate is more for the middle heating location of the thermally active
portion on the wall and much lower for the top heating active loca-
tion for case I. But for the case II, the average Nusselt and Sherwood
number is high for bottom active location. Top heating location
gives poor heat and mass transfer rate as like case I.

Fig. 10a and b shows the mid-height horizontal and vertical
profiles for the different Soret and Dufour effects. It is observed
that the fluid particle moves with greater velocity for the high va-
lue of Dufour parameter and the velocity is very low for the pres-
ence of Soret parameter. The effect of heat and mass transfer rate
against different thermal Rayleigh numbers and different Soret
and Dufour coefficients with Sc = 5, N = 1 and R = 0.5 are shown
in Fig. 11a and b. It is observed that the rate of heat and mass trans-
fer increases when the values of thermal Rayleigh number in-
crease. The heat transfer rate is high for Df = 1, Sr = 0 while the
mass transfer is also high for Df = 0, Sr = 1 in case I. The opposite re-
sult of it holds in the case II.

The steady-state variations in average Nusselt and Sherwood
numbers with respect to time for the top heating active position,
RaT = 105, R = 0.5, N = 1, Sc = 5 and for different Soret and Dufour
coefficients are shown in Fig. 12a–b. As time evolves the particles
near the hot wall have higher temperature and so the heat and
mass transfer rate starts decreasing, thus, we get a sudden fall in
the values of average Nusselt and Sherwood numbers. Finally,
the steady state is reached and tends to be constant.

5. Conclusions

A numerical model was employed to analyze the flow, heat and
mass transfer of water filled in a partially heated active square
enclosure with the presence of Soret and Dufour effects. The fol-
lowing conclusions are drawn. It is observed that the temperature
of maximum density leaves strong effects on the heat and mass
transfer due to the formation of bi-cellular structure. The non-lin-
ear behavior of heat and mass transfer rate is due to the maximum
density effect. It is found that the rate of heat and mass transfer in-
creases when the values of thermal Rayleigh number increase in all
heating locations. The fluid particle moves with greater velocity
and high heat transfer rate for the high value of Dufour coefficient
and the velocity is less and high mass transfer rate for the presence
of Soret coefficient in case I. The opposite behavior was observed
for case II.
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